SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title:	LOGIC & SWITCHING CIRCUITS
Code No.:	ELN 207
Program:	NON-SEMESTERED TECHNICIAN PROGRAM
Semester:	THREE
Date:	MAY, 1984
Author:	P. SZILAGYI

X New:_____ Revision:_____

APPROVED:

P. Arazietto Chairperson

84/05/05-

Date

LOGIC & SWITCHING CIRCUITS ELN 207

NUMBER	OF	THEORY PERIODS:	28
NUMBER	OF	LABORATORY PERIODS	21

PREQUISITES: ELN 100, Electronic I

TEXTBOOK(S): Digital Fundamentals (2nd Ed.), by Thomas L. Floyd

National Logic Data Book

BLOCKS	THEORY PERIODS	TOPIC DESCRIPTION	REFERENCE CHAPTERS
I	9	Logic Gates and Combinational Logic Boolean Algebra	1, 2, 3, 5, A
II	7	Integrated Circuit Tech- nologies Functions of Combinational Logic	A 6
III	9	Flip-Flops, Counters and Registers	7, 8
IV	3	Interfacing and Data Transfer	10

- 2 -

OBJECTIVES

BLOCK I:		THEORY PERIODS
Introduction: Logic function	Logic levels and pulse waveforms ons, elements of digital logic	1
Logic Gates: gates. Truth parameters	3	
Boolean Algeb Simplificatio	1	
Combinational simplificatio operation. 7 gates (NAND, Exclusive OR	3	
BLOCK TEST		1
BLOCK II:		
Integrated Ci Low power, Sc	2	
Functions of adders; compa - demultiple;	4	
BLOCK TEST		1
BLOCK III:		
<u>Flip-Flops</u> :	S-R Latches - cross-coupled NAND - cross-coupled NOR D Latch Edge triggered S-R Flip-Flop Master-Slave S-R Flip-Flop Edge triggered D Flip-Flop J-K Flip-Flops Electrical and Switching Characteristics One-Shot (Monostable) Multivibrator	3

Counters: Binary Counters Decade Counters Asynchronous Counters Synchronous Counters Up-Down Synchronous Counters Cascaded Counters

Shift Registers: Serial in - serial out registers Parallel in - serial out registers Serial in - parallel out registers Parallel in - parallel out Bidirectional shift registers

BLOCK IV:

Interfacing and Data Transfer: Three state buffer The Schmitt trigger Digital to analog conversion Analog to digital conversion

BLOCK TEST (III & IV)

- 3 -

1

2

4

2

SPECIFIC OBJECTIVES

BLOCK I: Logic Gates and Combinational Logic

At the end of this block, the student will be able to:

- 1) Distinguish an analog and a digital signal.
- 2) Recall the meaning of the positive and negative logic, high and low level, leading and trailing edge of a digital signal.
- Represent digital information in serial and parallel form with waveforms. Identify MSB and LSB.
- 4) Recall nonideal pulse characteristics and waveforms.
- 5) Draw logic symbols and truth tables for NOT, AND, NAND, OR, NOR operation.
- 6) Analyse TTL and CMOS logic gate circuit diagrams.
- 7) Recall logic gate parameters: unit load, fan out, input and output voltage level, input and output current, noise margin, supply current, turn on delay, turn-off delay, gate propagation delay and operating frequence.
- Given a logic diagram, write and simplify the corresponding Boolean equation.
- 9) Given a Boolean equation, produce a logic diagram using specified type of gates to implement the equation.
- 10) Use logic gates to enable or inhibit the passage of digital signals.
- 11) Based on the universal property of the inverting gates, generate AND, NAND, OR, NOR functions with both NAND gate NOR gate.
- 12) Write the Boolean equation and draw the logic symbol of the AND-OR-INVERT operation.
- 13) Produce the truth table and the symbol of the exculusive OR and exclusive NOR gates.
- 14) Manipulate Boolean equations of logic diagrams including exclusive gates.

BLOCK III: Integrated Circuit Technologies

At the end of this block, the student will be able to:

- 15) Discuss power and speed characteristics of modern digital circuits, an describe the special techniques used for high speed operation (Scmottky, ECL, I²L).
- 16) Identify integrated circuits by the designated series number: (54/74; 54L/74L; 54M/74M; 54S/74S; 54LS/74LS).
- 17) Describe the use of open colector gates and wired logic functions.
- 18) Describe the use of tree state gates.

Functions of Combinational Logic

19) Use logic gates to produce a binary half adder and full adder. Recall truth table for the half adder and the full adder.

20) Draw the block diagram of a multibit binary adder.

- 4 -

- adders.
- 23) Recall the principle encoding. Use integrated circuit mecimals to BCD encoder.
- 30) Use logic gates for a four input mulitplexer and a four line demultiplexer.
- 31) Describe and discuss integrated circuit multiplexers and demutiplexers.
- 32) Use integrated circuit parity generator/checker.

BLOCK III:

At the end of this block, the student will be able to:

Flip-Flops

- 33) Recall the logic diagram, logic symbols, truth tables and functional operation of th following type of flip-flops:
 - set-reset crossed coupled NAND
 - set-reset crossed coupled NOR
 - D latch
 - edge triggered set-reset flip-flop
 - edge triggered D flip-flop
 - master-slave S-R flip-flop
 - J-K flip-flop
- 34) Analyse and draw timing diagrams for the above flip-flop.
- 35) Use TTL data books to find electrical and switching characteristics of integrated circuit flip-flops.
- 36) Recall the logic diagrams, logic symbols and functional operations of integrated circuit one-shot monostable multivibrators.

Counters

37) Utilize standard flip-flops and gates to implement:

- asynchronous counters
- synchronous counters
- binary counters
- decade counters
- modulus N counters
- up-down counters

- 38) Use integrated circuit TTL four bit binary ripple counter for divide by N frequence divider.
- 39) Use cascaded counters for frequence divider.
- 40) Discuss and use integrated circuit four bit synchronous counters.
- 41) Discuss the digital clock like counter application.
- 42) Describe the operation of, and utilize standard flip-flops and gates to implement the following types of shift registers:
 - serial in serial out
 - parallel in serial out
 - serial in parallel out
 - parallel in parallel out
 - shift right shift left

43) Discuss and use integrated circuit four bit registers.

BLOCK IV: Interfacing and Data Transfer

At the end of this block, the student will be able to:

- 44) Use three state gates to interface digital devices to a bus.
- 45) Discuss bidirectional three State bus drivers.
- 46) Use the Schmitt trigger as an interface circuit.
- 47) Recall the operation and applications of D/A and A/D converter.
- 48) Recall the operation of a four bit binary weighted input D/A converter and of a four bit ladder D/A converter.
- 49) Recall the operation of simultaneous, stair step ramp and tracking A/D converter.

JOB 2 - Combinational Logic - to reinforce specific objectives 9, 10, 11, 12

- JOB 3 Combinational Logic Functions - to reinforce specific objectives 25, 26, 27, 28, 31
- JOB 4 Flip-Flops - to reinforce specific objectives 34, 35, 36
- JOB 5 Counters - to reinforce specific objectives 39, 40, 41, 42
- JOB 6 Shift Registers - to reinforce specific objectives 43, 44
- JOB 7 A/D and D/A Converters - to reinforce specific objectives 48, 49, 50

48)

- 7 -